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Abstract
The transition metal–oxygen (TM–O) bond appears prominently throughout
chemistry and solid-state physics. Many materials, from biomolecules to
ferroelectrics to the components of supernova remnants contain this bond in
some form. Many of these materials’ properties strongly depend on fine details
of the TM–O bond and intricate correlation effects, which make accurate
calculations of their properties very challenging. We present quantum Monte
Carlo, an explicitly correlated class of methods, to improve the accuracy of
electronic structure calculations over that of more traditional methods like
density functional theory. We find that unlike s–p type bonding, the amount
of hybridization of the d–p bond in TM–O materials is strongly dependent on
electronic correlation.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Transition metal chemistry is a particularly exciting area of research, with applications
from astrophysics to biology to potential inexpensive high-efficiency solar cells and high-
temperature superconductivity. Because of the partially filled d shell, transition metals can form
many types of bonds and can also exhibit ferroelectric and ferromagnetic ordering. Transition
metal oxides (TMOs) are particularly interesting because they are one of the most common
transition metal complexes, and they exhibit most of the above effects. This rich physics is
quite difficult to describe theoretically, however, since electronic correlation is very strong in
these materials. Current approximate density functional theories tend to perform quite poorly
on transition metals, particularly in comparison to its quite good accuracy on elements with s-
and p-type bonding. Problematic quantities are not hard to find; they include the dipole moment
in molecules, binding (or cohesive energies), the lattice constants of perovskites, high-pressure
behavior, and band gaps/excitation energies.

Rather than attempting to improve the approximate density functional, quantum Monte
Carlo (QMC) approaches take a different direction—explicitly treating the electronic
correlation in a wavefunction-based approach, while maintaining reasonable scaling with
system size. It can be made to scale from O(1) to O(N3) in the number of electrons [1],
depending on the quantity of interest. QMC attains very low upper-bound energies on medium-
sized electronic problems (up to thousands of electrons at the time of writing), and has been
used as a benchmark method on s–p systems [2]. Since it treats the electronic correlation
explicitly in the many-body wavefunction, it is a promising method for strongly correlated
TMO systems.

The goal of this review is to summarize the current state of the art of QMC as applied
to TMOs. This is a fairly new field, with few calculations. Most of these calculations have
benchmarked the method to determine the accuracy that one should expect. This accuracy has
generally been quite high on most of the quantities studied, particularly for energetics. In the
course of this work, it has also been determined what trial function (starting guess, as explained
in the methods section) is necessary to obtain this accuracy. The upper-bound property of
diffusion Monte Carlo has been critical in this success. By this, we have also learned that the
electronic correlation in transition metal oxides is entangled with the d–p orbital hybridization
in these materials.

2. Quantum Monte Carlo

The most common flavours of quantum Monte Carlo that have been used on TMOs are
variational, diffusion, and reptation Monte Carlo (VMC, DMC, and RMC, respectively). We
will summarize them here; one can find a more complete review in [3]. Another flavour,
auxiliary field Monte Carlo (AFQMC) [4], has been used in a few calculations, but will not
be discussed here.

VMC is a direct application of the variational theorem. We write the many-body
wavefunction as a function of many-body coordinates R = [r1, r2, . . . , rNe ] and a set of
variational parameters P. One then approximates the ground-state wavefunction by minimizing
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the energy expectation value

E(P) =
∫

�∗(R, P)H�(R, P) dR, (1)

assuming that the wavefunction is normalized. For a complicated variational ansatz such as we
will introduce later, this integral cannot be evaluated analytically. One can, however, evaluate
it using Monte Carlo by rearranging the integral to read

E(P) =
∫

|�(R, P)|2 H�(R, P)

�(R, P)
dR. (2)

Since |�(R, P)|2 is a probability distribution function, one can sample it using Markov chain
Monte Carlo and evaluate the energy expectation value as an average over the local energy
EL(R) = H�(R)

�(R)
. The lowest-energy approximate wavefunction is then found by minimizing

the energy. In practice, a combination of energy and the variance of the local energy [5] or
variance only [6] is optimized.

Many wavefunctions can be used with VMC, since the only requirement is that one can
evaluate the wavefunction and its derivatives quickly. For the work covered in this paper,
we start with a Slater determinant of one-particle orbitals, D, or a linear combination of
Slater determinants. We then multiply D by the explicitly correlated inhomogeneous Jastrow
correlation factor eU to obtain the Slater–Jastrow variational wavefunction DeU . We write

U =
∑
i j I

u(ri I , r j I , ri j) (3)

where the lower-case indices stand for electronic coordinates, and the upper-case indices are
ionic coordinates. There is considerable choice on how to expand u; for concreteness, we show
one expansion that performs well enough and has been applied to TMOs. The correlation factor
is expanded in the Schmidt–Moskowitz form [7]:

u(ri I , r j I , ri j ) =
∑

k

cei
k ak(ri I ) +

∑
m

cee
m bk(ri j)

+
∑
klm

ceei
klm(ak(ri I )al(r j I ) + ak(r j I )al(ri I ))bk(ri j),

where the ak and bk functions are written as
1 − z(r/rcut)

1 + βkz(r/rcut)
, (4)

with different βk for the different types of functions. The polynomial z(x) = x2(6 − 8x + 3x2)

is chosen so the functions go smoothly to zero at rcut = 7.5 bohr. The βk and all the expansion
coefficients cei , cee, and ceei are optimized. If there are multiple determinants, their coefficients
can also be optimized. We then use the VMC wavefunction as a trial function for RMC or DMC.

DMC and RMC are based on the so-called imaginary time Schrödinger equation

−d�(R, τ )

dτ
= (H − E0)�(R, τ ), (5)

which has a steady-state solution �0, the lowest energy eigenfunction with eigenvalue E0 as
long as �(R, 0) has a non-zero overlap with �0. All non-steady-state solutions converge
exponentially to the eigenstate �0 as τ goes to infinity. Transforming to an integral equation,
we have

�0(R1) = lim
τ→∞

∫
G(R1, R0, τ )�T(R0) dR0, (6)

where G is the Green’s function of the imaginary-time Schrödinger equation and �T(R0) is the
trial wavefunction that we obtain from VMC. Solving for the exact G for large τ is as difficult as
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solving for �0, so we choose some constant small value of τ for which we know G accurately
(for example, see [3, 8]), and compound the operations (suppressing the τ dependence of G):

�0(R) = lim
n→∞

∫
G(R, Rn) . . . G(R1, R0)�T(R0) dR0 dR1 . . . dRn. (7)

Each application of G is interpreted as a stochastic process, in the same way that the diffusion
equation can be mapped onto Brownian particles and vice versa (in fact, for a free particle, the
Hamiltonian is − 1

2∇2 and the simulation is a diffusion process).
DMC performs a simulation of these random particles for large n. All implementations

of DMC use a particularly clever importance sampling transformation by multiplying the
imaginary-time Schrödinger equation (equation (5)) by the trial function �T(R) and working
with the time-dependent function �T(R)�(R, τ ). Since the time dependence is the same,
it eventually obtains samples distributed according to the probability distribution function
PR∞(R) = �0(R)�T(R). This transformation improves the efficiency of the calculation by
several orders of magnitude [3] by using information that we already have about the ground
state in the form of a trial function. The final probability distribution function can be used to
evaluate the ground-state energy as follows:

〈E0〉 =
∫

dR�T(R)�0(R)
H�T(R)

�T(R)
, (8)

since �0 is an eigenstate of H and H can operate forwards or backwards. Any operators that do
not commute with the Hamiltonian will have expectation values that are biased, only becoming
unbiased in the limit of �T = �0.

We can remove the error in these operators by using reptation Monte Carlo [9, 10], where
the random walk is performed in the space of paths: s = [R0, R1, . . . , Rn−1, Rn]. We sample
the path probability distribution

�(s) = �T(R0)G(R0, R1) . . . G(Rn−1, Rn)�T(Rn). (9)

This can be interpreted in several different ways. If we examine the distribution at R0, we
can view the samples of Green’s functions as acting on �T(Rn), and therefore PR0(R0) =
�T(R0)�0(R0). This is the same distribution as we obtain in DMC as the path length goes
to infinity. Alternatively, since G is symmetric on exchange of the two R coordinates, the
probability distribution of Rn is the same. Finally, we can split the path in two, one projecting
on �T(R0), and the other projecting on �T(Rn). We then have

PRn/2(Rn/2) = (G(Rn/2, Rn/2−1) . . . G(R1, R0)�T(R0))

×(G(Rn/2, Rn/2+1) . . . G(Rn−1, Rn)�T(Rn)) = �2
0(Rn/2)

for n → ∞, which allows us to obtain correct expectation values of operators that do not
commute with the Hamiltonian.

3. Geometry optimization

In TMO materials, it is particularly useful to be able to optimize the geometry of the system
within QMC. The usual way of doing this in mean-field calculations is to calculate the forces
on the atoms and use one of many minimization routines. Unfortunately, there are not yet any
reliable methods to calculate the force within diffusion Monte Carlo, despite much work in
that direction [10–13]. These methods all require high-accuracy trial wavefunctions, which we
usually do not have for transition metals. Thus, with the current state of the art, we are only
able to optimize a few key degrees of freedom using the total energies from DMC calculations
and line minimization. Even this must be done carefully because of the statistical uncertainty
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in the DMC energy. What follows is the scheme used in the work presented here, which has
been found to be quite robust.

According to Bayes’ theorem, given a model M and a set of data D, the probability of the
model given the set of data is

P(M|D) = P(D|M)P(M)

P(D)
. (10)

P(D) is an unimportant normalization constant and P(M) is called the prior distribution,
which we are free to set to reflect the a priori probability distribution on the set of models.
One usually sets P(M) = 1, the unbiased maximum entropy/least knowledge condition. In the
case of normally distributed data on a set of points {x1, x2, . . . , xN },

P(D|M) ∝ exp

[
−

∑
i

(M(xi ) − D(xi))
2/2σ 2(xi)

]
, (11)

where σ(x) is the statistical uncertainty of D(x).
For example, in the case of bond lengths, we can limit our space of models to M(x) =

c1 + c2x + c3x2, for x close to the minimum bond length. This is equivalent to setting
the prior distribution equal to one for all quadratic functions and to zero for non-quadratic
functions. One then calculates several data points D(x) with statistical uncertainties σ(x).
The probability distribution function of the bond length b is then obtained by calculating the
marginal distribution

p(b) =
∫

δ(−c2/2c3 − b)P(D|M)P(M) dc1 dc2 dc3∫
P(D|M)P(M) dc1 dc2 dc3

. (12)

This integral is only three-dimensional, and as such could be calculated by a grid method, but
it is convenient to calculate it by Monte Carlo, by sampling P(D|M)P(M) and binning the
bond length. The probability distribution function for the bond length is typically a Gaussian
function to high accuracy, so it can be described as a mean value with a statistical uncertainty.

To make this scheme more efficient, we would like to calculate QMC energies as far
away from the minimum as possible while still maintaining accuracy. This is because the
energy changes much more quickly far from the minimum, which mitigates the stochastic
uncertainties. That is, the energy scale is larger far from the minimum, so less precision is
necessary. Thus, we should use a fitting function that is valid as far from the minimum as
possible, while containing as few parameters as possible. For minimum-energy geometries, it
has been found [14, 15] that the Vignet or modified Morse potentials are quite good for this
purpose.

4. Approximations

4.1. Pseudopotentials

In QMC, we can increase the efficiency significantly by using pseudopotentials to replace the
core electrons with an effective potential. This has the effect of removing the large fluctuations
near the core, which do not contribute much to the valence electrons’ correlation, which is
important for chemical properties. This introduces two approximations in the technique: first,
the pseudopotential itself, and second, the small localization error [16] in diffusion Monte
Carlo.

It has been found that small-core pseudopotentials are necessary for high accuracy on
transition metals [17, 18]. On the 3d metals, which are the primary focus in this paper, this
means a Ne-core pseudopotential. The reason for this is that the 3d electrons occupy much the
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same space as the semicore 3p and, to a lesser extent, the 3s electrons. Since the 3d electrons
are strongly affected by bonding, they in turn interact with the semicore. This interaction will
change with correlation and chemical environment, so we must include the semicore electrons
in accurate electronic structure calculations. This is not unique to QMC and is generally done
in density functional theory where high accuracy is needed [19].

4.2. Finite size errors

When performing calculations for extended systems such as crystals, it is necessary to introduce
periodic boundary conditions. This is an approximation on two levels. The first is the standard
one-body level that is corrected by using reciprocal-space sampling (i.e., k-points). The second
level is inherent in a many-body correlated method, where the periodic boundary conditions
force the electron to interact unphysically with its periodic image. This is similar to the finite
simulation cell error in classical molecular dynamics simulation. This is typically corrected
by either modifying the Coulomb interaction to remove the spurious interaction [20] or by a
correction [21, 15]. Neither of these methods has clearly been demonstrated to be superior, and
both methods or similar ones have been used successfully. Even with these corrections, a QMC
calculation of an extended system usually involves on the order of 40 to 100 atoms, regardless
of the size of the primitive cell, followed by extrapolation to infinite size.

4.3. Fixed node

The algorithms described above are exact when the wavefunction can be written as a positive
function, since then �T�0 is a probability distribution function. For fermions, it is not usually
the case that �T has the same zeros as the exact ground state, so we make the fixed-node
approximation, where the nodal surface of the exact wavefunction are assumed to be the same
as the trial wavefunction. This approximation typically results in recovering 90–95% of the
correlation energy, and can be relaxed, but at the cost of exponential scaling of the system
size [3].

Given that the pseudopotential localization approximation is usually quite small for energy
differences [22], we are mostly concerned with the fixed-node error. The Jastrow factor does
not change the nodes of the wavefunction, so in the method outlined above, the nodes (and
thus the final accuracy) are fixed to be the nodes of the Slater determinant of orbitals from
the mean-field method. It is currently not feasible to vary the orbital expansion directly for
a large system, since the number of parameters grows to the thousands for even moderately
sized systems. However, partial optimizations can be done, and, as we shall see, they are very
effective for TMO systems.

5. TMO molecules

Simple molecular systems are excellent starting points for the study of transition metal oxides,
since they are small enough to study carefully in a reasonable amount of time, and are also
treatable by accurate but expensive quantum chemistry techniques like the coupled cluster.
This provides an additional much-needed data point to compare the accuracy of the various
electronic structure methods.

5.1. Near-optimal one-particle orbitals

Wagner and Mitas [23] performed the first calculations using DMC on simple two-atom
transition metal oxides (TiO and MnO), and found a strong dependence of the calculated
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Figure 1. The energy gain in DMC from using B3LYP orbitals as a function of the metal monoxide.
The line is a guide to the eye. Taken from [25].

Figure 2. The d–p hybridization orbital (doubly occupied) isosurface for TiO in Hartree–Fock (left)
and B3LYP (right). B3LYP enhances the hybridization significantly, which leads to lower energy in
QMC. Figure generated using VMD and POV-Ray [26, 27].

binding energy on the orbitals used in the Slater determinant. They used the B3LYP hybrid
DFT/Hartree–Fock functional, and varied the percentage of Hartree–Fock mixing. They found
the optimal percentage to be very close to the semi-empirical value fitted by Becke for his
B3PW potential [24]. We have plotted the energy gain of B3LYP orbitals versus Hartree–Fock
for the first five transition metal monoxide molecules in figure 1. Upon examining the orbitals,
they found a large difference in the d–p hybridization for both TiO (figure 2) and MnO. This is
a direct consequence of the importance of electronic correlation in transition metals.

To understand the importance of the one-particle orbitals, one can conceptually divide the
total energy in three parts, each described by a different part of the wavefunction:

• One-body and antisymmetry: the Slater determinant.
• Two-body electron interaction: Jastrow factor.
• Higher orders: implicit diffusion Monte Carlo wavefunction.

The first part, the Slater determinant, determines the nodes of the wavefunction and therefore
the ultimate accuracy of the calculation. Empirically, in materials containing only s- and p-type
elements, these three parts are almost independent of each other—the Hartree–Fock orbitals are
close to optimal for a Slater–Jastrow wavefunction. In transition metal oxides, however, this
situation changes, and the two-body and higher interactions are strong enough to change the
one-body part significantly. In TMOs, this effect seems to be largely in the d–p hybridization
between oxygen and the transition metal.
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Figure 3. The density of the TiO molecule projected onto the Ti–O axis in the bonding region for
various methods.

Table 1. Binding energies of the first five transition metal monoxides by different theoretical
methods, along with RMS deviations from the experiment (all in eV). Statistical uncertainties in
units of 10−2 eV are shown in parentheses for Monte Carlo and experimental results. Zero-point
energy corrections are estimated to be much less than the uncertainty in experiment. There are too
few AFQMC data to calculate meaningful RMS values.

Method ScO TiO VO CrO MnO RMS

LDA [28] 9.09 9.13 8.48 6.26 6.51 2.19
CCSD(T) [29] 6.71 6.64 6.13 4.20 3.43 0.31
TPSSh [28] 7.11 7.18 6.44 4.45 4.62 0.38
DMC [25] 7.06(3) 6.81(3) 6.54(3) 3.98(2) 3.66(3) 0.21
AFQMC [30] — 7.02(21) — — 3.79(34) —
Exp [31] 7.01(12) 6.92(10) 6.44(20) 4.41(30) 3.83(8) 0

By using the reptation Monte Carlo algorithm, we can obtain the unbiased one-particle
density within the fixed-node approximation (figure 3), which gives further insight into the
importance of correlation in the one-particle density. QMC tends to enhance the density
in the bonding region (the hybridization) over both Hartree–Fock and B3LYP, but is not
able to completely repair the erroneous Hartree–Fock density because of the fixed-node
approximation. This is the reason for the large energy gain from using B3LYP orbitals to
fix the nodal surface.

5.2. Energetic performance

The total energy of a system is quite important for determination of lowest-energy spin states,
competing phases, reactions, etc, and is a place where traditional density functional theory has
encountered difficulties on transition metal oxides. In table 1, we compare the binding energy
obtained by DMC using B3LYP orbitals to DFT in the local density approximation (LDA),
meta-GGA TPSSh and coupled cluster. We find excellent accuracy, with the root-mean-square
(RMS) deviations of DMC within the experimental uncertainty for most materials. CrO is the
only molecule with a large deviation from experiment; however, it is not very far outside the
experimental uncertainty. DMC is also able to consistently obtain a minimum-energy bond
length with errors below 0.01 Å (table 2), better than any other published result.
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Table 2. Bond lengths in Å for the first five transition metal monoxide molecules.

Method ScO TiO VO CrO MnO RMS

LDA [28] 1.644 1.597 1.564 1.584 1.602 0.033
CCSD(T) [29] 1.680 1.628 1.602 1.634 1.66 0.011
TPSSh [28] 1.659 1.613 1.582 1.612 1.628 0.012
DMC [25] 1.679(2) 1.612(3) 1.587(3) 1.617(4) 1.652(4) 0.008
Exp [31] 1.668 1.623 1.591 1.621 1.648 0

Table 3. Dipole moments in Debye. The fixed-node RMC results have been obtained with a single
determinant of B3LYP orbitals. See text for an analysis of the errors involved for the case of TiO.

Method ScO TiO VO CrO MnO

LDA [28] 3.57 3.23 3.10 3.41 —
CCSD(T) [29] 3.91 3.52 3.60 3.89 4.99
TPSSh [28] 3.48 3.43 3.58 3.97 —
RMC [25] 4.61(5) 4.11(5) 4.64(5) 4.76(4) 5.3(1)
Exp [37] 4.55 3.34(1) [38] 3.355 3.88 —

5.3. Dipole moments

While energetics are very important for electronic structure calculations, one is also often
interested in non-energetic properties, such as dipole moments. There has been little work
done on such things within QMC, even in the context of simpler s and p systems. To our
knowledge, the only study of dipole moments other than on TMOs is of the CO molecule [32].
A primary reason for this lack of calculations is that, until the development of RMC, there has
not been an easy to implement method to obtain expectation values without the mixed-estimator
bias. The commonly used methods, pure diffusion Monte Carlo and forward-walking [33–35],
do not scale well with the system size [36], since they suffer from increased fluctuations of
weights as the number of particles increases. One can also use extrapolated estimation, where
the expectation value of an operator is estimated as 〈O〉 = 2〈O〉DMC −〈O〉VMC, but that method
introduces an additional approximation that one would like to avoid if possible.

RMC, on the other hand, scales quite well, and is easily applicable to medium-sized
systems such as TMO molecules. As we have noticed above, the electronic correlation and
hybridization are very intertwined, and therefore, the electronic correlation and dipole moment
are also closely related. In table 3, we report the dipole moments for the first five transition
metal monoxides using RMC with B3LYP orbitals. RMC obtains dipole moments much higher
than that found in experiment, which is somewhat surprising given the high accuracy seen in
energetic properties. We will explore the fixed-node approximation and its effect on the dipole
moment in the next section.

5.4. Beyond the Slater–Jastrow form

In this section, we explore one of the biggest advantages of the QMC method—the ability
to go beyond a Slater–Jastrow trial function if needed. As we saw in the previous section,
RMC with the Slater–Jastrow trial function does not obtain dipole moments in agreement with
experiment. The dipole moment is very sensitive to electronic correlation, and we wish to
perform as accurate a calculation as possible to approach the exact value. We can do this in
QMC by expanding the wavefunction in determinants. We write the trial wavefunction as

�T(R) =
(∑

i

ci Di

)
eU , (13)

9
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Figure 4. The number of determinants versus the energy and dipole moment for TiO. The dipole
moments are shifted downwards by 0.1 Debye to correct for the pseudopotential error.

where the Di are determinants of one-particle orbitals, eU is the Jastrow factor, and the ci

are variational parameters. These determinants and the initial coefficients are taken from a
configuration interaction (CI) calculation, and the coefficients are reoptimized using variational
Monte Carlo in the presence of the Jastrow factor.

This last reoptimization step is crucial, since the DMC energy increases if the CI
coefficients are kept constant. This is a result of the strong correlation of these systems—
the first-order correlations are taken care of by the Jastrow factor, which the CI calculation tries
to describe (inefficiently) with determinants.

In figure 4, we see the convergence of this expansion for TiO. The energy has a smooth
convergence in the number of determinants, but the dipole moment oscillates significantly, with
smaller oscillations as the number of determinants increases. The final result is approximately
3.8(1) Debye, a significant change from the Slater–Jastrow trial wavefunction, but still quite
far from the experimental value of 3.34(1) Debye. While this calculation is probably not at the
exact limit, the dipole moment does not appear to change enough to reconcile with experiment.
Somewhat reassuringly, though, the coupled-cluster value also predicts a larger value for the
dipole moment, so it is possible that the experiment may be in error. More studies of non-energy
properties using quantum Monte Carlo are sorely needed, however, to obtain an estimate of the
expected accuracy.

6. Solids

Calculations on extended TMO systems using QMC are particularly challenging, since QMC
suffers not only from one-body finite-size effects (i.e., that described by k-point sampling), but
also from many-body finite-size effects, which require large simulation cells. For this reason,
complete studies such as those reported above for molecules are not usually attainable, and
most work is still in progress. We will discuss a few preliminary studies and a few private
communications of work that remains unpublished at the time of this writing. Clearly, the
details of the calculations may change, so this section is meant more as a comment on the
current state of the art.

Using QMC, there have been studies of the antiferromagnet NiO [39, 40] and MnO [17].
Except for Tanaka [39], who performed a very rough optimization of the lattice constant within
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Table 4. Cohesive energies for several materials using QMC, all calculated per formula cell. Also
listed are the optimal mean-field orbitals if reported. LDA is the local density approximation of
DFT, and PBE0 is a hybrid functional.

Material DMC binding energy (eV) Experimental Mean-field orbitals

NiO [40] 9.442(2) 9.5 Hartree–Fock
MnO [17] 9.40(5) 9.5
BaTiO3 [42] 31.2(3) 31.57 LDA
FeO [41] 9.47(4) 9.7 PBE0 [43]

variational Monte Carlo, all the published studies calculated only the cohesive energy, which
comes quite close to experiment (table 4) for the materials available. In the very recent work
of Kolorenc and Mitas [41], they obtain similar accuracy for the cohesive energy of FeO and
also obtain the correct ordering of phases for that material, which DFT mispredicts. In most
of these materials, researchers have found a large dependence on the mean-field orbitals used,
with the optimal orbitals ranging from Hartree–Fock to LDA. Apparently, there is no universal
optimal mean-field method.

Wagner and Mitas [42] have also reported using the Bayesian optimization scheme to find
the minimum-energy lattice constant of BaTiO3, which is well known to be underestimated
by over 1% in the LDA to density functional theory, and overestimated by a similar margin
in the gradient corrections. This 1% error in the lattice constant can affect the calculated
spontaneous polarization up to 50%, so even this small error is not acceptable for a truly first-
principles description of this material. DMC obtains a cubic lattice constant in error only by
0.015±0.005 Å, which is somewhat less than half a per cent, a significant improvement over the
density functional results. Also, in BaTiO3, there is an energy gain in DMC of ∼1 eV/formula
cell by using LDA orbitals instead of Hartree–Fock orbitals, and they report that it is due to a
similar change in d–p hybridization that is seen in the transition metal monoxide molecules.

7. Conclusions

On the systems that have been tested thus far, QMC offers unprecedented accuracy in a
completely first-principles and scalable method, particularly in the energetics of the systems.
The d–p hybridization of transition metal oxides is strongly affected by electronic correlation.
Using QMC methods, we can clearly see this, both by investigating the minimum-energy
orbitals and by examining the one-particle density and dipole moment within QMC. The dipole
moment in particular is strongly affected by the level of correlation present in the quantum
mechanics approximation.

On TMO molecules, we have a significant gain in the total energy on expansion into
determinants, of about 0.5 eV. This means that we are relying on cancellation of errors for the
high accuracy of QMC, although to a much lesser degree than post-Hartree–Fock approaches
and DFT. We see this error in the dipole moment, which does not benefit from cancellation
of errors. On the molecules, however, we can use a brute-force approach by expanding in
determinants and come quite close to the true ground state. However, this kind of expansion
will ultimately fail for large systems, since the number of determinants grows very quickly with
system size. In order to reliably check the QMC results, it is vital to develop new reasonably
scaling wavefunctions that go beyond the Slater–Jastrow form. Some work has been done
in this direction with the RVB [44], Pfaffian [45], and backflow [46, 47] wavefunctions in
QMC. These wavefunctions’ accuracy should be tested on TMO systems in the future. Equally
important are optimization schemes within VMC that can systematically minimize the energy
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with respect to the wavefunctions’ parameters, despite the stochastic nature of VMC, which
is under serious investigation [5, 48]. Finally, we need to be able to calculate forces within
QMC accurately and efficiently. The current state of the art is not sufficient to treat transition
metal oxides [15], and the Bayesian method of geometry optimization is only efficient for a
few dimensions.

The future looks promising for QMC calculations of TMO solids, with the only drawback
that the calculations are very expensive on today’s computers, since one must use a large
supercell. However, the scaling with system size is quite favourable, and QMC is very easy
to operate in parallel, so it can take advantage of low-cost processors. It has already been
shown for a few important transition metal oxide solids that QMC can obtain binding energies
and other energetic properties with excellent accuracy, well worth the additional cost when
high accuracy is needed. It remains to be seen how well the method performs for non-energetic
properties, and what sort of trial wavefunctions are necessary to obtain even higher accuracy.
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